作为一位不辞辛劳的人民教师,常常要根据教学需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。怎样写教案才更能起到其作用呢?教案应该怎么制定呢?以下是小编为大家收集的教案范文,仅供参考,大家一起来看看吧。
初中数学分钟试讲教案篇一
苏教版国标本五年级上册《认识负数》第一课时
教学目标:
1、在具体情境中认识负数,感受负数的实际意义;会正确读写正、负数;初步感知正、负数可以表示两种相反的关系;知道负数都小于零,正数都大于零。
2、体验生活与数学的联系,会用正负数的知识解释生活现象。
教学过程:
一、创设情境,激趣引入
(多媒体出示沈阳大雪时的一幅照片)
师:这是沈阳大雪时的一幅照片。猜猜看,这时的气温可能是多少度?(指名口答)
(评:以温度引入负数,符合学生的认知特点。“猜温度”既能服务于本节课的教学重点,又有利于激发学生的学习热情。)
二、借助经验,自主探究
1、 认识温度计
小结:温度计上有两种计量单位:一种是摄氏度,一种是华氏度。我国统一使用摄氏度。
师:[多媒体出示标有沈阳温度读数(零下20℃)的温度计]谁能读出图中沈阳的温度?说一说你是怎样看出来的?(指名口答)
2、教学例1。
谈话:同学们,咱们中国幅员辽阔,南方和北方在气温上有很大差异。当沈阳还是千里冰封的世界时,南京和海口的气温又是多少呢?咱们一起来看一下。(多媒体出示三幅温度计图:沈阳零下20℃;南京0℃;海口零上20℃)
师:从这几幅图中,你能看出南京和海口的气温吗?你能说说怎样看出来的吗?你还能得到哪些重要的数学信息?(小组讨论、指名汇报交流。)
师:沈阳和海口的气温一样吗?为什么?
你能用自己喜欢的方式表示这两个不同的温度吗?(学生记录后,展示、交流评价。)
师:数学语言需要交流,交流就要符号统一。(展示并板书-20℃、+20℃)这是科学家规定的记录方法。
讲解:“-”是负号,“+”是正号,要写得小一点。-20℃读作负二十摄氏度; +20℃读作正二十摄氏度。+20℃也可以简单记作20℃。
(2)练一练。
(多媒体出示标有吐鲁番盆地某一天最低气温和最高气温的温度计图:零下9℃、零上27℃)
师:你能用刚才的方法把它们记录下来吗?[指名反馈,教师揭示
(板书):-9℃、27℃]
3、教学例2。
(1)出示例2。
师:吐鲁番盆地的早晚温差非常大。人们常这样来形容:“早穿棉袄午穿纱、围着火炉吃西瓜”。这与它的地理特征有很大关系。(出示例2:珠穆朗玛峰比海平面高8844米;吐鲁番盆地比海平面低155米。)
(2)教师讲解“海拔”的含义。
(3)你能用以上的方法表示出这两个海拔高度吗?(学生独立完成后,指名口答。板书:8844米、-155米)
(4)练一练。
黑海海拔高度是-28米。
马里亚纳海沟最深处的海拔是-11034米。
(评:两道例题两个层次,例1通过让学生观察、讨论、交流等数学活动,初步感知负数,并掌握负数的表示方法;例2教师则完全放手,让学生根据例1中温度的表示方法,类推出海拔的表示方法。教学方法一详一略,一扶一放。)
三、抽象概括,沟通联系。
1、揭示概念。
揭示课题(板书)。
2、介绍负数产生的历史。
(多媒体出示教科书第九页“你知道吗?”)
3、认识0与正、负数的关系。
师:你认为0是正数还是负数呢?理由是什么?(小组讨论、指名汇报结果)
0与负数比、0与正数比,大小有什么关系?(指名回答)
四、巩固练习,应用拓展。
1、选择合适的温度连一连。(多媒体出示教科书练习一第四题)
2、你知道这些温度吗?读一读。(教科书练习一第五题)
3、你能在温度计上表示出这些温度吗?(多媒体出示地图,闪烁温度:石家庄﹣5℃、长春﹣10℃、杭州5℃、桂林10℃)
(让学生在练习纸上完成后,比一比这几个城市温度的高低。)
4、下面是小明的一则日记。
2007年7月18日 晴
今天天气很热,大约有10℃。好多爱美的女士为了避暑都打上了遮阳伞。
我跟着爸爸来到他上班的冷食加工厂,一进加工车间,感到凉飕飕的,估计温度大概有-15℃。爸爸打开冷柜,马上有一股寒气袭来,我猜冰柜里的温度大约有8、9℃吧。
回来的路上,碰到了同学,我们就聊开了。洪军说:前几天,他们全家到泰山旅游,爬上了海拔﹣1545米的山顶;晓玲说:他们全家去了连云港,听说连云港海的最低处是海拔34米呢!
……
这则日记中有些数据不符合实际情况,你能找出来吗?你知道怎么改吗?
五、全课总结。
师:这节课我们一起认识了负数。你有哪些收获,给大家分享,好吗?
六、拓展延伸。
让学生课外注意观察身边的事物,搜集一些可以用负数表示的数量。
总评:
简约。紧紧围绕教学目标来确定教学主线。让学生在具体情境中认识负数,感受负数的实际意义;在引导学生创造的基础上,教学正、负数的表示方法;让学生联系生活感知正数和负数意义相反、相互依存的关系;……使人感到简洁、明快。
贴切。数学知识源于生活经验。老师注意寻找贴近学生生活的数学素材,精心设计符合学生年龄特点的数学活动。使得学生乐学、深思,真正成为课堂的主人。
课始,老师让学生猜测沈阳大雪时的温度;接着自然地将温度计引出,并让学生自主交流温度计的有关知识;……既可以消除学生对教学内容的陌生感,同时也能激发学生的求知欲,使得学生积极参与数学活动。使人感到真切、自然。
充实。数学重在思考。认识负数时,借助温度计和海拔,引导学生通过看一看、猜一猜、说一说、议一议等数学活动,从不同的角度感受负数、理解负数,并用所学知识解决生活中的实际问题。从而让学生经历了“感知——探索——建构——应用”的认知过程,有利于增强认识,落实目标。使人感到实在、高效。
和谐。关注学生学习过程评价。老师注意给学生提供广阔的思维空间,鼓励学生尽情地表达自己的意见与想法。例如:“你了解温度计吗?把你了解的情况和大家交流一下,好吗?”、 “你能说说是怎样看出来的吗?”、“ 你能用自己喜欢的方式表示吗?”、“你有哪些收获,给大家分享,好吗?”……有利于学生自主参与知识的形成过程,从而形成平等、自由、和谐的学习氛围。使人感到轻松、流畅 。
初中数学分钟试讲教案篇二
“正数与负数”是人教版七年级数学上册第一章第一节的内容,属于“数与代数”领域的知识。本节课是学生学过的自然数与分数的延续和拓展,又是后面研究有理数的基础,因此起到了承上启下的作用。作为初中阶段的第一节课,不仅要让学生学会区分正、负数以及用正、负数表示相反意义的量,还要培养学生对数学学习的兴趣和自信心。
根据课程标准和学生认知特点,我确定如下三维教学目标:
(1)知识与技能:
理解正、负数的概念,了解正数与负数是从实际需要中产生的;会列举出周围具有相反意义的量,并用正负数来表示;会判断一个数是正数还是负数;明确零既不是正数,也不是负数。
(2)过程与方法:
探索负数概念的形成过程,使学生建立正数与负数的数感。
(3)情感态度与价值观:
实际例子的引入,让学生体验到数学来源于生活,服务于生活,激发学生学习数学的兴趣。
教学重点:了解正、负数的意义,学会用正、负数表示日常生活中具有相反意义的量。
教学难点:了解负数的意义及0的内涵。
为了突出重点,突破难点,使学生能够达到教学目标,我将在教法上采用引导启发法和讲解传授法相结合的方法来完成本节课的教学。这是因为七年级的学生个性活泼,学习积极性高。在整个过程中,我将讲解和分析与学生自己归纳相融合,激发学生的学习兴趣。
鼓励学生积极主动地参与到教与学的整个过程,对学生的回答与表现给予肯定、表扬,由此保护并发展学生学习数学的好奇心、积极性。
在教学方法和理念的引领下,我将本节课的教学过程设计分为五个部分:创设情境,引入新课;合作交流,探索新知;巩固练习,熟练技能;总结反思,发展情意;布置作业。
(一)创设情境,引入新课
首先我让学生观察课本上的三幅图,通过设置问题串,让学生复习小学学过的自然数、零和分数,让学生了解到数是因为实际生活的需要产生的。同时增加一个新的问题:某市某天的最高气温是零上3℃,最低气温是零下3℃,要表示这两个温度,如果都记作3℃,这样就不能把它们区别清楚。这样之后学生很容易就发现,用以前学过的数不能简洁清楚地表示这两个数,由此需要产生一种新数,自然而然地引入了新课。这样的引入,既符合学生已有的认知基础,又能够较好地激发学生探索问题的欲望。
(二)合作交流,探索新知
例1:气温有零上3℃和零下3℃;
例2:高于海平面8848米和低于海平面155米;
例3:收入50元和支出32元;
例4:汽车向东行驶4千米和向西行驶3千米。
我会让学生对以上例子中出现的每一对量进行讨论。由于学生的语文基础,很容易就发现:零上和零下,高于和低于,收入和支出,向东和向西都是一对反义词。于是我在学生回答 的基础上,进一步归纳出它们的共同特点:零上和零下,高于和低于,收入和支出,向东和向西,都是具有相反意义的量。然后让学生自己举出一些日常生活中具有相反意义的量的实例。学生在阅读课本后很容易就会回答:足球比赛中的净赢球和净输球;花生产量的增长和减少;体重的增加和减少等例子。这样的举例,一方面能够充分调动学生参与的热情,另一方面也为新知的展开铺平了道路。
帮助学生理解了具有相反意义的量后,我将带领学生回到创设情境中产生的问题:零上3℃和零下3℃应该如何表示? 一边引导学生,一边归纳总结:对于具有相反意义的两个量,如果其中一种量用正数表示,那么另一种量可以用负数表示。通常地,我们规定盈利、存入、增加、上升为正,亏损、支出、减少、下降为负。如零上3℃和零下3℃可以表示成+3℃和—3℃;收入50元和支出32元可以表示成+50元和—32元。
这里建立正数与负数的概念时,我会特别强调,零既不是正数也不是负数,它是正数与负数的分界。同时指出,0不仅仅表示“没有”的意义,还有确定的意义,比如0℃就是一个确定的温度。
(三)巩固练习,熟练技能
为了使学生实现由掌握知识到运用知识的转化,我将通过形式不同的练习,让学生把知识转化成技能。如课本上的练习:判断正、负数以及用正、负数表示具有相反意义的量。在判断正、负数的时候,我将再一次强调学生的易错点:0既不是正数,也不是负数。而其中一道练习:如果水位升高3m 时水位变化记作+3m,那么水位下降3m 时水位变化就可以记作—3m,水位不升不降时水位变化可以记作0m。这里也要特别强调0表示的意义。由此让学生加深对正、负数概念以及零的意义的理解。课内及时练习,反馈调整,有利于提高课堂的教学效率,减轻学生的课外负担。
(四)总结反思,发展情意
(1)用正数与负数表示具有相反意义的量;
(2)零既不是正数也不是负数。从而起到了对本节课巩固深化的作用。这样不但可以梳理学生的思维,促进学生记忆,而且可以让学生的知识结构更合理、更完善、更有所侧重。
(五)布置作业
最后,针对所有学生的实际情况,布置课后练习作业,并将作业进行分层,这样可以充分调动学生的学习积极性,同时也适应了不同学生的不同要求,切实减轻学生的课业负担。
各位老师,以上说课只是我在短时间内以教师为主导,学生为主体为指导思想设计出来的一种方案,一定存在很多不足的地方,如果准备时间充分的话,我会在教学过程这一模块进行更多细节的探讨,让本节课的内容讲授更贴近学生的实际情况,让学生更容易接受新知识。
初中数学分钟试讲教案篇三
有人说爱情是心与心的碰撞,有人说爱情是黑暗中闪闪发光的宝石,也有人说爱情使人欢乐有人说爱情使人痛苦,是啊,因为爱情,孟姜女哭倒长城,卓文君奔向司马相如;因为爱情,林黛玉含恨焚诗稿,祝英台忍悲赴黄泉。泰戈尔说:“世界上最遥远的距离不是生与死,而是我就站在你的面前,而你不知道我爱你。
好,现在请同学们翻开书,作者是谁?
戴望舒(1905---1950),原名戴梦鸥,浙江杭州人,中国现代有名诗人。因受西方象征派的影响,意想朦胧,含蓄。诗集有《我底记忆》《望舒草》《望舒诗稿》《灾难的岁月》。
俗话说“熟读唐诗三百首,不会作诗也会吟”,今天,就让我们做一回古人,一起来朗读《雨巷》,现在咱们集体朗读一下这首诗,请大家在读得过程中注意体会作者字里行间的感情。
多么美的一首诗啊,难怪当时《小说月报》叶圣陶先生说此诗“开创了中国新诗的新纪元”呢。
1.那么是个事通过什么来营造了伤感愁绪呢? 明确:意象
2.诗歌中出现哪几个意象,应该怎样理解和欣赏呢?
(二)丁香。丁香是古典诗词里常见的意象,丁香常见的有白色,紫色两种,外形单薄细弱,往往用来代表孤高,漂亮和忧愁。诗人将这种美赋予“丁香一样的姑娘”,姑娘即丁香,丁香即姑娘。丁香可以象征诗人心中的理想,这种理想是高洁,漂亮的。但这种理想即如丁香花姑娘,一样即逝,不可把握,给人暂时的安慰,留下的却是永久的怀念和无限的惆怅。
3.“我”为什么会这样哀怨?为什么会产生这样低调的情感呢?
明确:《雨巷》产生的1927年夏天,是中国历史上最黑暗的时代,1927年3月,他因宣传革命而被反动派当局逮捕拘留过,“四一二”政变后,他隐居江苏松江,忍受着“在这个时代做中国人的苦恼”。
明确:不能。因为这个姑娘不是真实存在的,是作者想象出来的,想象的人物是没有“重量”的;且“飘”字与后面的“梦”构成了最佳组合,“飘”字生动地描写出了诗人幻想中的“丁香姑娘”飘忽朦胧的特点。
5.诗人期待的“丁香姑娘”什么这么快就消失了?
明确:1.因为诗人只是与她邂逅在雨巷,她自然没有理由留下来,离开诗人是理所当然的。2.因为这个“丁香姑娘”本来就诗人幻想中的形象,她根本就没有存在过。
言表的悲哀。总之,这个“雨的哀曲”烘托了气氛,渲染了诗人的心情,不可去掉。
明确:也许是为诗人的忧郁叹息,也许是因为她最佳的惆怅叹息,也许是为雨巷颓墙叹息,也许是为这个时代叹息,甚至可以理解为诗人通过姑娘的眼光为国家而发出叹息。
四
对于美好的事物,我们都想得到,当得不到时,都难免失落痛苦,《雨巷》的魅力在于不仅揭示了一个时代,而且还写了一个人类共有的心情,那就是“失落的忧伤”,在文艺上叫做“共鸣”。
“李杜文章在,光焰万丈长”,诗人远矣,诗情犹在,每当细雨迷蒙的时候,请想起戴望舒,去寻找我们心中的丁香姑娘。
初中数学分钟试讲教案篇四
(说教材)
数与形是数学的两大组成部分,数形结合的思想方法是数学中的一个重要思想方法,而数轴是数形结合的高度统一。数轴是新人教版数学教材七年级上册第一章第二节的内容,是在学生学习了有理数概念的基础上再介绍的。通过数轴的学习可加深学生对有理数概念的理解,并为后面引出相反数、绝对值的概念,学习有理数大小比较、有理数运算法则、平面直角坐标系等打下良好的基础,起到承上启下的作用。
本课的教学对象是刚刚步入中学校门的七年级学生,此阶段学生天真活泼,好奇心强,有较强的模仿能力和求知欲望,而且富有一定的逻辑思维能力。但在新知的学习过程中,还是较容易出现理解局限的问题。
a、知识技能:
1、理解数轴概念,会画数轴。
2、知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应。
b、数学思考:
1、从直观认识到理性认识,从而建立数轴概念。
2、通过数轴概念的学习,初步体会对应的思想、数形结合的思想方法。
c、解决问题:会利用数轴解决有关问题。
d、情感态度:通过数轴的学习,体会数形结合的思想方法,进而初步认识事物之间的联系性,感受数学与生活的联系。
本节课教学重点我确定为:数轴的概念。
因为:只要数轴概念真正理解了,画数轴、在数轴上表示有理数等也就容易了。
本节课教学难点我确定为:从直观认识到理性认识,从而建立数轴概念。
因为:七年级的学生形象思维占主导地位,抽象思维刚开始萌芽。
教有教法,学有学法,但无定法,贵在得法,下面谈谈本节课的教法与学法。
1、教法:数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中不仅要使学生“知其然”而且要使学生“知其所以然”,我们在以学生既为主体,又为客体的原则下,展现知识和方法的思维过程,因为新课标和新理念认为,获得数学知识的过程比获得知识更为重。基于本节课的特点:课堂教学采用了“情境—问题—观察—思考—提高”的步骤,使学生初步体验到数学是一个充满着观察、思考、归纳、类比和猜测的探索过程。
根据教材分析和目标分析,贯彻新课程改革下的课堂教学方法,确定本节课主要采用启发引导探索的教学方法。学生在教师营造的“可探索”的环境里,积极参与,互相讨论,一步步地掌握数轴的概念,并通过练习,使学生更好地理解数轴概念,从而体会数形结合的思想。
根据本节课的教学内容,我所采用的教学手段是:多媒体辅助教学
通过课件演示,创设情境,让学生分四人小组讨论、交流、总结,并派代表发言。教师耐心引导、分析、讲解和提问,并及时对学生的意见进行肯定与评议,从而突出教师是学生获取知识的启发者、引导者、帮助者和参与者的形象。
2、学法:俗话说“授人以鱼,不如授人以渔”,在教学中我特别重视学法的指导,让学生在“观察—操作—交流—思考—概括—应用”的学习过程中,自主参与、经历数学知识的形成和应用过程。告诉学生,学习数学不是简单模仿、机械操练,而是探究学习、发现学习、研究学习、合作学习。
“凡事预则立,不预则废”,充分的课前准备是成功的一半。
老师:要充分备课,精心制作多媒体课件,准备教具
学生:要认真预习,准备直尺或三角板
(一)复习旧知
通过对已知知识的回顾复习,使学生更易于接受新知识。
(二)创设情景,引入课题
观察温度计的活动,目的是为了让学生切身体会数与形的对应关系,为学习数轴概念埋下伏笔。
学生拿出自己准备的温度计分小组讨论观察,共同发现数与形的对应关系。
接下来,我创设了这样一个情境:
在一条东西方向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆。随后我提出问题:“怎样用数简明地表示这些树、电线杆与汽车站的相对位置?”(学生小组讨论后再派代表回答)通过这个活动,让学生们认识到:考虑东西方向的马路上一些树、电线杆与汽车站的相对位置关系,既要考虑距离,又要考虑方向,从而需要用正负数描述。
再次观察所画情境图、温度计
并引导学生观察、比较,将其抽象成一条直线。
这样,就把正数、0和负数用一条直线上点表示出来。
(三)学习概念,解决问题
通过刚才的观察、比较,我引出了新课:
1)学习数轴的概念
我先进行讲解:
(1)在直线上任取一个点表示数0,这个点叫做原点。
(2)规定直线上从原点向右(或上)为正方向,通常以向右为正方向。
(3)选取适当的长度为单位长度,每隔一个单位长度取一个点。
再画数轴
师生共同归纳画数轴的步骤,要求学生独立画出数轴,并互相交流,老师巡堂并参与交流使学生弄清如何画数轴。
设计意图:通过学生画数轴,交流和反思,使学生真正掌握数轴的概念。
3)在数轴上表示右边各数:
4)指出数轴上a,b,c,d各点分别表示什么数。
设计意图:让学生明白任何一个有理数都可以用数轴上的一个点来表示。
下一个活动,填空:数轴上表示-2的点在原点的()边,距原点的距()表示3的点在原点的()边,距原点的距离是()。
通过填空,老师引导学生做出课本第12页的归纳
课堂练习:
1)课本第12页的练习1、2题
2)强化练习:
(1)在数轴上标出到原点的距离小于3的整数。
(2)在数轴上标出-5和+5之间的所有的整数。
设计意图:通过练习,巩固数轴的概念;强化练习是为了培养学生用数轴解决问题的能力。
小结:什么是数轴?如何画数轴?如何在数轴上表示有理数?
1)数轴的三要素:原点、正方向、单位长度。
2)画数轴的步骤:
1.画直线;
2.在直线上取一点作为原点;
3.确定正方向,并用箭头表示;
4.根据需要选取适当单位长度。
作业:课本第17页习题1.2第2题;学生用书同步训练
设计意图:通过适量的练习有利于学生掌握所学内容,对于学有余力的同学还应该给他们足够的发展空间,让他们多做同步训练。
这节课,我通过五个活动的教学设计,既遵循了概念教学的规律,又符合初中生的认知特点,指导学生操作、观察、引导概括,获取新知;同时注重培养学生由感性认识上升为理性认识。在教学过程中让学生动口、动手、动眼、动脑为主的学习方法,使学生学有兴趣、学有所获。
初中数学分钟试讲教案篇五
正方形的定义.
(1)对角线相等的菱形是正方形吗?为什么?
(2)对角线互相垂直的矩形是正方形吗?为什么?
(4)能说“四条边都相等的四边形是正方形”吗?为什么?
(5)说“四个角相等的四边形是正方形”,对吗?
让学生将事先准备好的矩形纸片,按要求对折一下,裁出正方形纸片.
问:所得的图形是矩形吗?它与一般的矩形有什么不同?
所得的图形是菱形吗?它与一般的菱形有什么不同?
所得的图形在小学里学习时称它为什么图形?它有什么特点?
(一)新课
请同学们推断出正方形具有哪些性质?
(1)正方形的四个角都是直角。
(2)正方形的四条边相等。
(1)正方形的两条对角线相等。
(2)正方形的两条对角线互相垂直平分。
(3)正方形的每条对角线平分一组对角。
初中数学分钟试讲教案篇六
各位老师,大家好!今天我说课的题目是人教版七年级(上)第二章第二节《整式的加减》第1课时。
首先,我对本节教材进行一些分析:
一、教材分析:
上启下的课。
二、教学目标:
1、知识目标:
(1)使学生理解多项式中同类项的概念,会识别同类项。
(2)使学生掌握合并同类项法则。
(3)利用合并同类项法则来化简整式。
2.能力目标:
并且能在多项式中准确判断出同类项。
(2)、在具体情景中,通过探究、交流、反思等活动获得合并同类项的法则,体验探求规律的思想方法;并熟练运用法则进行合并同类项的运算,体验化繁为简的数学思想。
3、情感目标:激发学生的求知欲,培养独立思考和合作交流的能力,让他们享受成功的喜悦。
三、教学重点、难点:
重点:同类项的概念、合并同类项的法则及应用。
难点:正确判断同类项;准确合并同类项。
(1)教法分析:
应用意识和发散思维。
五、教学过程:
初中数学分钟试讲教案篇七
一、温度中的“负数”
师:老师搜集了我国三个城市某天的最低气温资料,大家想看看吗?(课件)
杭州的最低温度是多少?
生:3摄氏度 生:39摄氏度
师:到底是多少?问题出在观察的方式上。(师介绍温度计两边的刻度摄氏度和华氏)
师:我们常用的是摄氏度。
师:我们来到了六朝古都南京最低气温是多少?生:0摄氏度
师:北京最低气温是多少?生:零下3摄氏度 。
师:你是怎么看的? 生:我发现它是在0以下,再数下3格就是零下3摄氏度。
师:北京与杭州的最低气温一样吗?为什么?
生:杭州气温是零上3摄氏度,北京是零下3摄氏度。
( 板书杭州 南京 北京的气温 )
师:你知道数学上是怎样区别零上3摄氏度与零下3摄氏度的吗?
(教学认读正3摄氏度 负3摄氏度 )
(课件展示某城市温度计 学生举学具卡片表示)
哈尔滨 -14摄氏度 漠河 -30摄氏度
海口 30 摄氏度
这时老师发现有两个同学的答案不同说:“可给我逮到了!”
师:+30摄氏度与30摄氏度哪个对?
生:这两个都对的。
师:把学具卡片放好,它只是我们的工具。
师:现在我们来做气象纪录员,看谁有快又准确。
(略)
二、海拔中的“负数”
师:不同地区气温有差别,同一地区一天中的气温也有差别,想了解吗?
(课件欣赏吐鲁番盆地的奇特自然现象)
师:吐鲁番气温变化是什么原因?是海拔。
(课件出示海拔高度示意图)
师:从图中你知道了什么?
生:珠穆朗玛峰海拔8844.43米, 吐鲁番盆地海拔低于海平面155米。
师:你能用今天所学的数表示出珠穆朗玛峰与吐鲁番盆地的海拔高度吗?
(同桌商量着互相说。)
师:你还有什么问题?
(师补充说明8844.43是最新的测量高度。)
(练习:用正负数表示各地的海拔高度。)
马耳代夫平均海拔比 海平面高1米
师:平均海拔比海平面高1米是什么意思?
师:海拔高于海平面10米有可能吗?
(练习:根据海拔高度判断各地高于海平面,还是低于海平面。)
欧洲是世界上海拔最低的洲,平均海拔高度300米。
马里亚那海沟 最深处海拔-11032米
师:你读了这句有什么感觉?
生:很高 。生:很深。
三、数学中的“负数”
师:我们把它们的单位去掉,观察这些数你能给它们分分类吗?
生:分两类,有减号的与没减号的。
生:分3类,有减号的,有加号的,40是另一类。
师:你认为把它分在哪里合适?
师:像+3、40这样的数是“正数”;像-3、-400这样的数是“负数”。
( 出示一条数轴,在中间添上0)
师:如果这里是0,你能想到什么?
生:0的右边是负数,左边是正数。
生:0的左边是负数,0的右边是正数。
师:数学上规定0左侧的为负数,右侧的为正数。
( 生读数轴上的数)
师:读得完吗?红红的0该向哪边走呢?
师:0应该是分界线,0既不是正数也不是负数,所有的正数大于0所有的负数小于0。
师:我们回顾一下,学到了什么?
(揭示课题:认识负数 欣赏延伸《负数的历史》)
四、生活中的“负数”
师:生活中,你还在哪里见到过负数?
(工资单、电梯控制面板、)
(解决问题1、连一连 2、说一说 3、填一 填 4、想一想)
(课件出示有关刘翔比赛的资料:刘翔速度14.42秒 赛场风速为-0.4米)
师:你有疑问吗?
(师生表演来解释风速-0.4米)
初中数学分钟试讲教案篇八
会通过“移项”变形求解“ax+b=cx+d”类型的一元一次方程。
数学思考
1.经历探索具体问题中的数量关系过程,体会一元一次方程是刻画实际问题的有效数学模型。进一步发展符号意识。
2.通过一元一次方程的学习,体会方程模型思想和化归思想。
解决问题
能在具体情境中从数学角度和方法解决问题,发展应用意识。
经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性。
情感态度
经历观察、实验计算、交流等活动,激发求知欲,体验探究发现的快乐。
教学重点
建立方程解决实际问题,会通过移项解 “ax+b=cx+d”类型的一元一次方程。
教学难点
分析实际问题中的相等关系,列出方程。
教学过程
活动一 知识回顾
解下列方程:
1. 3x+1=4
2. x-2=3
3. 2x+0.5x=-10
4. 3x-7x=2
教师:前面我们学习了简单的一元一次方程的解法,下面请大家解下列方程。
出示问题(幻灯片)。
学生:独立完成,板演2、4题,板演同学讲解所用到的变形或运算,共同讲评。
教师提问:(略)
教师追问:变形的依据是什么?
学生独立思考、回答交流。
本次活动中教师关注:
(1)学生能否准确理解运用等式性质和合并同列项求解方程。
(2)学生对解一元一次方程的变形方向(化成x=a的形式)的理解。
通过这个环节,引导学生回顾利用等式性质和合并同类项对方程进行变形,再现等式两边同时加上(或减去)同一个数、两边同时乘以(除以,不为0)同一个数、合并同类项等运算,为继续学习做好铺垫。
活动二 问题探究
教师:出示问题(投影片)
提问:在这个问题中,你知道了什么?根据现有经验你打算怎么做?
(学生尝试提问)
学生:读题,审题,独立思考,讨论交流。
1.找出问题中的已知数和已知条件。(独立回答)
2.设未知数:设这个班有x名学生。
3.列代数式:x参与运算,探索运算关系,表示相关量。(讨论、回答、交流)
4.找相等关系:
这批书的总数是一个定值,表示它的两个等式相等。(学生回答,教师追问)
5.列方程:3x+20=4x-25(1)
总结提问:通过列方程解决实际问题分析时,要经历那些步骤?书写时呢?
教师提问1:这个方程与我们前面解过的方程有什么不同?
学生讨论后发现:方程的两边都有含x的项(3x与4x)和不含字母的常数项(20与-25)。
教师提问2:怎样才能使它向x=a的形式转化呢?
学生思考、探索:为使方程的右边没有含x的项,等号两边同减去4x,为使方程的左边没有常数项,等号两边同减去20。
教师提问3:以上变形依据是什么?
学生回答:等式的性质1。
归纳:像上面那样把等式一边的某项变号后移到另一边,叫做移项。
师生共同完成解答过程。
设问4:以上解方程中“移项”起了什么作用?
学生讨论、回答,师生共同整理:
通过移项,含未知数的项与常数项分别位于方程左右两边,使方程更接近于x=a的形式。
学生思考回答。
教师关注:
(2)在参与观察、比较、尝试、交流等数学活动中,体验探究发现成功的快乐。
活动三 解法运用
例2解方程
3x+7=32-2x
教师:出示问题
提问:解这个方程时,第一步我们先干什么?
学生讲解,独立完成,板演。
提问:“移项”是注意什么?
学生:变号。
教师关注:学生“移项”时是否能够注意变号。
通过这个例题,掌握“ax+b=cx+d”类型的一元一次方程的解法。体验“移项”这种变形在解方程中的作用,规范解题步骤。
活动四 巩固提高
1.第91页练习(1)(2)
3.小明步行由a地去b地,若每小时走6千米,则比规定时间迟到1小时;若每小时走8千米,则比规定时间早到0.5小时。求a、b两地之间的距离。
教师按顺序出示问题。
学生独立完成,用实物投影展示部分学而生练习。
教师关注:
1.学生在计算中可能出现的错误。
2.x系数为分数时,可用乘的办法,化系数为1。
3.用实物投影展示学困生的完成情况,进行评价、鼓励。
巩固“ax+b=cx+d”类型的一元一次方程的解法,反馈学生对解方程步骤的掌握情况和可能出现的计算错误。
2、3题的重点是在新情境中引导学生利用已有经验解决实际问题,达到巩固提高的目的。
活动五
提问1:今天我们学习了解方程的那种变形?它有什么作用、应注意什么?
提问2:本节课重点利用了什么相等关系,来列的方程?
教师组织学生就本节课所学知识进行小结。
学生进行总结归纳、回答交流,相互完善补充。
教师关注:学生能否提炼出本节课的重点内容,如果不能,教师则提出具体问题,引导学生思考、交流。
引导学生对本节所学知识进行归纳、总结和梳理,以便于学生掌握和运用。
布置作业:
第93页第3题